
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS                       Vol. 8, No. 5-6, May - June 2014, p. 535 - 539 

 

Generating a novel hyperchaotic system out of 

equilibrium 

 
VIET-THANH PHAM

a,*
, CHRISTOS VOLOS

b
, SAJAD JAFARI

c
, XIONG WANG

d
 

a
School of Electronics and Telecommunications, Hanoi University of Science and Technology, 

01 Dai Co Viet, Hanoi, Vietnam 
b
Physics Department, Aristotle University of Thessaloniki, GR-54124, Greece  

c
Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran 

d
Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China 

 

 

 
In this paper a new no-equilibrium hyperchaotic system is proposed by adding a tiny perturbation to a known hyperchaotic  
system with a line equilibrium. The fundamental dynamical properties of the new system are discovered including Lyapunov 
exponents, bifurcation diagram, Poincaré map and limit cycles. In addition, an electronic circuit emulating the new system is 
also presented to verify the feasibility of theoretical model. Interestingly, by applying the introduced methodology another 
new memristor-based hyperchaotic system without equilibrium has also been created. 
 

(Received April 11, 2014; accepted May 15, 2014) 

  

Keywords: Hyperchaos, No equilibrium, Hidden attractor, Lyapunov exponent, Bifurcation diagram, Poincaré map, Memristor 

 

 

1. Introduction 
 

A simple well-known chaotic flow with five terms 

and two nonlinearities (Sprott case A) was found in 1994 

[1]. This chaotic flow is worth noting because it has no 

equilibrium. It means that the conventional Shilnikov 

criteria [2, 3] cannot be applied to prove the chaos in the 

flow. However, studies on chaotic systems without 

equilibrium have only been received significant attention 

recently due to the fact that such systems belong to a class 

of chaotic system with hidden attractor, which has 

practical and theoretical importance [4-7]. Remark chaotic 

systems with no equilibria have been reported in [8, 9]. In 

addition, hyperchaotic systems without equilibrium have 

been introduced simultaneously. Wang et al. [10] proposed 

and analyzed a new no-equilibrium hyperchaotic system 

with nine terms including three quadratic nonlinearities 

and two cubic nonlinearities. But the authors only 

described their system by four first-order ordinary 

differential equations. By introducing an additional fourth 

state and combining it into the second equation of a 

generalized diffusionless Lorenz equations, a no-

equilibrium hyperchaotic were obtained [11]. The system 

has eight terms with two quadratic nonlinearities. In a 

similar way, Li and Sprott presented a simple equilibrium-

free autonomous system with the existence of hyperchaos 

[12]. Li’s system with only seven terms consists of two 

nonlinearities.  

Investigations on no-equilibrium hyperchaotic system 

with hidden attractors is an attractive topic. Such systems 

have potential applications, especially in the field of 

secure communication because there is no limitation of 

equilibrium.   

Motivated by very complex dynamical behaviors of 

hyperchaotic systems and unusual features of hidden 

attractors, a novel hyperchaotic system without 

equilibrium is newly introduced in this paper. Its dynamics 

is discovered through Lyapunov exponents, bifurcation 

diagram, Poincaré map and limit cycles. Moreover, the 

circuit realization of system is also presented to illustrate 

the feasibility of theoretical system. By applying the same 

methodology for generating the proposed hyperchaotic 

system, an additional novel hyperchaotic example using 

memristor is also found. 

 

 

2. New hyperchaotic system without  
    equilibrium 
 

Recently, Li et al. [13] have  been developed a four-

dimensional system with eight terms and three parameters 

(a, b, and c): 

 

 ẋ = y – xz  – yz + w  

 ẏ = axz (1) 

 ż = y
2
 – bz

2 

 ẇ = – cy. 

 

When a, b, c ≠ 0, system (1) has the line equilibrium E(x, 

0, 0, 0). It is noting that system (1) is hyperchaotic for 

various combinations of parameters. For example, the 

maximum hyperchaos is obtained for a = 5, b = 0.28, and c 

= 0.05 [13]. Furthermore, the infinite line of equilibrium 

points leads system (1) into a dynamical system with 

hidden attractors [4, 5, 14].  
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Obviously, it is easy to imagine that when applying a 

tiny perturbation to system (1), its hyperchaos may be 

preserved while the infinite equilibrium points are 

disappeared. Therefore a simple additional parameter d is 

added to system (1). As a result, a new system (denoted as 

the model HNE1) is given as: 

 

 ẋ = y – xz  – yz + w  

 ẏ = axz + d (2) 

 ż = y
2
 – bz

2
 

 ẇ = – cy, 

where a = 5, c = 0.05 and b, d are the real parameters. 

System (2) is a four-dimensional autonomous flow 

with five quadratic nonlinearities. When d = 0, it becomes 

Li’s system (1); when d ≠ 0, however, the new system (2) 

possesses no any equilibrium points. It is interesting that, 

when b = 0.28, d = –0.001 and the initial conditions (x0, y0, 

z0, w0) = (0, 0, 0.8, 0.02), the new system HNE1 can 

display a hyperchaotic attractor with no equilibria, as 

shown in Fig. 1. 

It has been known that the Lyapunov exponents 

measure the exponential rates of the divergence and 

convergence of nearby trajectories in the phase space of 

chaotic system. For a four-dimensional hyperchaotic 

system there are two positive Lyapunov exponents, one 

zero and one negative Lyapunov exponent [15]. Thus 

Lyapunov exponents of the system HNE1 have been 

calculated using well-known algorithm in [16]  to verify 

its hyperchaos when b = 0.28 and d = –0.001. In this work, 

Lyapunov exponents are denoted by ,
iL i = 1, 2, 3, 4 with 

1 2 3 4
.L L L L      Apparently, the system HNE1 is 

hyperchaotic because it has more than one positive 

Lyapunov exponent 
1

0.0756 0,L  
2

0.0382 0,L  

3
0,L  and 

4
1.6600.L    

The Kaplan-Yorke fractional dimension, which 

presents the complexity of attractor, is defined by 

 

1

KY

1

1
D ,

i

j

j

L

iL

j 





    

where j is the largest integer satisfying 

1

0
i

j

L

i




 and 

1

1

0.
i

j

L

i







  The calculated fractional dimension of system 

HNE1 when b = 0.28 and d = –0.001 is KYD 3.0686 3.   

Therefore, it indicates a strange attractor. In addition, the 

Poincaré map of the system HNE1 also reflects properties 

of chaos (see Fig. 2). 

 

 
a 

 
b 

Fig. 1. Hyperchaotic attractor without equilibrium in the 

novel proposed system HNE1  for b= 0.28, and                               

d = –0.001 (a) in the y-z plane, (b) in the y-w plane. 

 

 
Fig. 2. Poincaré map in the y-z plane when x = 0. 

 

 

In order to have detailed view of the novel system 

HNE1 (2), its behavior with respect to the bifurcation 

parameter b is discovered. The bifurcation diagram (see 

Fig. 3) is obtained by plotting the local maxima of the state 

variable z(t) when changing the value of b. Further, the 
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numerical calculated result of Lyapunov exponents is 

shown in Fig. 4.  

 

 
Fig. 3. Bifurcation diagram of zmax with d = –0.001 and  

b as varying parameter. 

 

 
 

Fig. 4. Three largest  Lyapunov exponents 
1
,L  

2
,L  

3L  (solid line, dot line, and dash-dot line, respectively) 

of system (2) versus b for d = –0.001. 

 

 

Both the bifurcation diagram and the corresponding 

Lyapunov spectrum evidently indicate that there are some 

windows of limit cycles, of chaotic behavior and of 

hyperchaotic behavior. For example, when the parameter b 

decreases from 1.0, the system HNE1 goes through a limit 

cycle, torus and chaos before getting hyperchaos. Fig. 5 

illustrates the periodic orbit of the system HNE1 for the 

parameter b = 0.8.   

 

 
 

 
 

Fig. 5. The periodic orbit of system (2) for b = 0.8,  

and d = –0.001. 

 

 

3. Circuit implementation 
 

An electronic circuit is designed to realize the new 

proposed hyperchaotic system (2). As shown in Fig. 6, 

common off-the-shelf components such as resistors, 

capacitors, operational amplifiers, and multipliers are 

used. The state variables x, y, z, and w of system (2) are 

the voltages across the capacitors C1, C2, C3, and C4, 

respectively. As a result, the corresponding equations of 

circuit can be written as below 

 

1 1 2 1 3 1 4 1

5 2 6 2

2 2

7 3 8 3

9 4

1 1 1 1

10 10

1 1

10

1 1

10 10

1
.

d

x y xz yz w
R C R C R C R C

y xz V
R C R C

z y z
R C R C

w y
R C

   

 

 

 

   (3) 

 

The power supplies are ±15 volts while the values of 

circuit elements in Fig. 6 are chosen as follows:               

C1 = C2 = C3 = C4 = 1nF, R1 = R4 = R6 = R = 100kΩ,        
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R2 = R3 = R7 = 10kΩ, R5 = 2kΩ, R8 = 35.714kΩ,  R9 = 

2MΩ, and Vd = 1mVDC. The designed circuit is 

implemented in the electronic simulation package NI 

Multisim and the results are presented in Fig. 7. A good 

agreement between the theoretical and circuital attractors 

(see Fig. 1 and Fig. 7) confirms the feasibility of the 

hyperchaotic system without equilibrium (2).  

 

 

 
 

Fig. 6. Electronic circuit schematic of the new hyperchaotic 

system without equilibrium (2). 

 

 
a 

 
b 

Fig. 7. Hyperchaotic attractor of the designed electronic 

circuit obtained from Multisim (a) in the y-z plane, (b) in 

 the y-w plane. 

4. Discussion 
 

Memristor [17] was introduced as the fourth basic 

circuit element besides the three classical elements (the 

resistor, the inductor, and the capacitor). Recently, 

researchers at Hewlett-Packard (HP) Labs have 

implemented successfully nano-scale memristors [18]. 

That motivates a new attractive area in which memristor-

based systems can be realized with special unknown 

features [19-21]. Up to now, the intrinsic nonlinear 

characteristic of memristor could be exploited in 

constructing novel chaotic systems with complex 

dynamics [22-25]. It has been found that some of such 

memristor-based systems can display chaotic attractor with 

an infinite number of equilibrium due to the presence of 

memristor [24, 25]. Especially, a hyperchaotic system 

using memristor has been presented in [26]. The 

dimensionless equations of the system have been given as  

 ẋ = –a(2x + y + yz)  

 ẏ = –b(x – xz) + y(0.1 + 0.6w
2
) (4) 

 ż = –z – cxy 

 ẇ =  y. 

Obviously, the equilibria of memristor-base system (4) is 

E(0, 0, 0, w). In other words, system (4) has a real line 

equilibrium and belongs to a new category of hyperchaotic 

systems with hidden attractors [4, 5]. 

In order to illustrate the effectiveness of the 

mentioned approach in Section 2, a new no-equilibrium 

memristor-based system is also constructed in this Section. 

By adding a tiny control parameter d into system (4), a 

novel memristor-based system without equilibrium (called 

HNE2) has been obtained in the following form 

 

 ẋ = –a(2x + y + yz)  

 ẏ = –b(x – xz) + y(0.1 + 0.6w
2
) + d (5) 

 ż = –z – cxy 

 ẇ =  y. 

  

The selected parameters, Lyapunov exponents, 

Kaplan-Yorke dimension, and initial conditions of new 

system (5) are reported in Table 1. Two positive Lyapunov 

exponents indicate hyperchaos in new proposed 

memristor-based system HNE2. 

To the best of our knowledge, there are few works 

relating to the conversion of a chaotic system with hidden 

attractor, which is rarely reported in the literature, into a 

new chaotic system with hidden attractor [27]. In 

particular, there is no report about the hyperchaotic 

memristor-based system without equilibrium. Therefore 

this work has enlarged the list of hidden hyperchaotic 

attractors. 
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Table 1. Two proposed  novel systems without  

equilibrium which can exhibit hyperchaos 

 
Model Parameters LEs DKY (x0, y0, 

z0, w0) 

HNE1 a = 5 

b = 0.28 

c = 0.05 

d = –0.001 

0.0756 

0.0382 

0 

–1.6600 

3.0686 0.0 

0.0 

0.8 

0.02 

HNE2 a = 5 

b = 6 

c = 6 

d = –0.001 

0.1244 

0.0136 

0 

–10.8161 

3.0128 0.0 

0.01 

0.01 

0.0 

 

 

5. Conclusions 
 

This paper presents a novel hyperchaotic system 

without equilibrium which is generated from a known 

system with an infinite line of equilibrium points. The 

transformation from a hidden hyperchaotic attractor into 

another new hidden hyperchaotic attractor contributes 

towards little knowledge about the special characteristic of 

such systems.  

Furthermore, a new memristor-based hyperchaotic 

system without equilibrium is also constructed by using 

the introduced methodology. Because hyperchaos is better 

than conventional chaos in a variety of areas, for instance, 

hyperchaos increases the security of chaotic-based 

communication systems significantly [28, 29], designing 

hyperchaotic circuits based on memristor will be 

investigated in the future works. 
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